메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohan Laavanya (Vignan’s Foundation for Science Technology and Research University) Veeramani Vijayaraghavan (Vignan’s Foundation for Science Technology and Research University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.2
발행연도
2020.4
수록면
135 - 141 (7page)
DOI
10.5573/IEIESPC.2020.9.2.135

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In today’s scenarios, deep learning has fascinated all researchers from numerous arenas who developed ways to achieve obligatory outcomes. In deep learning, transfer learning is undergoing deep study, because the study helps to practice a pre-trained network for our own tasks. A novel, transfer-learned AlexNet-based residual learning for Gaussian noise reduction is presented in this paper. The method can remove any level of Gaussian noise without having information about the noise variance in both gray scale and color images. Therefore, our technique is blind Gaussian image denoising that learns a residual image by eradicating the clean image from the transfer-learned AlexNet, and removes noise by identifying the difference from the input image. Experimental results with the proposed scheme are compared against a Gaussian denoiser for image denoising in terms of peak signal-to-noise ratio (PSNR) and visual perception. The results have revealed that our residual learning using transfer-learned AlexNet attains promising denoising results.

목차

Abstract
1. Introduction
2. Related Work
3. Transfer-learned AlexNet Architecture for Residual Learning
4. Experimental Results
5. Conclusion
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000541533