메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임성훈 (대구경북과학기술원)
저널정보
한국방송·미디어공학회 방송과 미디어 방송과 미디어 제25권 제2호
발행연도
2020.4
수록면
17 - 26 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 스마트폰에서의 증강현실, 미적 효과의 증대(예, 라이브 포커싱) 등의 어플리케이션을 제공하기 위해 모바일 기기에서의 3차원 공간 복원 기술에 대한 관심이 증가하고 있다. 소비자들의 요구에 발 맞춰 최근 스마트폰 제조사는 모든 플래그십 모델에 다중 카메라 및 뎁스 센서(거리 측정 센서)를 탑재하는 추세이다. 본 고에서는 모바일 폰에 탑재되고 있는 대표적인 세 축의 뎁스 추정(공간 복원) 방식에 대해 간단히 살펴보고, 최근 심층학습(Deep learning)의 등장으로 기술 발전의 새로운 국면에 접어 든 다중 시점 매칭(Multi-view stereo) 방법에 대해 소개하고자 한다. 심층 신경망이 재조명 받은 2012년 전까지 주류 연구 방향이었던 전통 기하학 기반의 방법에 대한 소개를 시작으로 심층 신경망기반의 방법론으로의 발전된 형태를 살펴본다. 또한, 신경망기반의 방법론은 크게 3 세대로 나누어 각 세대별 특징에 대해 자세히 살펴보고, 다양한 데이터에 대한 실험 결과를 통해 세대별 공간 복원 결과를 비교 분석한다.

목차

요약
Ⅰ. 서론
Ⅱ. 3차원 공간 복원 개선 기술 동향
Ⅲ. 뎁스 추정(공간 복원) 성능 비교
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-000577226