메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유동수 (국립생태원) 권오창 (국립생태원) 김홍기 (충남대학교)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.11 No.2
발행연도
2020.4
수록면
113 - 122 (10page)
DOI
10.15531/KSCCR.2020.11.2.113

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Greenhouse gas released into the environment since the industrial revolution in the 18th century is resulting in global warming and is a critical issue with regard to climate change, which may result in problems such as influx of invasive alien plant/animal species, outbreak of endangered species, and spread of disease. In some studies on climate change and the ecosystem, average temperature and growing degree days (GDD) are basic and important climatic factors that are closely related to the conditions suited for growth and survival of animals and plants. When predicting climate change with average temperature and GDD, the Representative Concentration Pathway (RCP) is the main available scenario for the future climate. However, the RCP scenario has some errors because of its uncertainty caused by complex climate models, by inaccurate greenhouse gas emission, and by the physical natural environment. Thus, it is necessary to compensate the climatic data of the RCP scenario. We developed a simple program named RGI (RCP scenario‐based Growing degree days Interpolation) for interpolating average temperature and GDD per day calculated from the RCP scenario (resolution 1 km) as supported by the Korea Meteorological Administration (KMA) in South Korea. Our program interpolates average temperature and GDD from a set of RCP scenario data using a quadratic model and nonlinear models such as the self-starting logistic, Gompertz, or/and Weibull functions. When we tested the RGI program against the actual temperatures in Seoul and Buyeo, South Korea, RGI was close to the observed temperature and had significantly less residual standard error in linear regression analysis than the RCP scenario (p-value < 0.05) and showed similar results for an additional 10 sites. Based on these results, we expect that RGI can improve the uncertainty of the RCP scenario. As RGI is coded using Perl script language and R open source, it can be easily used. The executive RGI source is available at https://sourceforge.net/projects/rgi/.

목차

ABSTRACT
1. 서론
2. 평균기온 및 적산온도 보간
3. 연구결과
4. 결론 및 고찰
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-453-000577067