메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김은주 (누베베) 박영배 (누베베) 최가혜 (누베베) 임영우 (누베베) 옥지명 (누베베) 노은영 (경희대학교) 송태민 (삼육대학교) 강지훈 (한국산업기술대학교) 이향숙 (경희대학교) 김서영 (누베베)
저널정보
대한한의학회 대한한의학회지 대한한의학회지 제41권 제2호
발행연도
2020.6
수록면
58 - 79 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objectives: The purpose of this study is to predict the weight loss by applying machine learning using real-world clinical data from overweight and obese adults on weight loss program in 4 Korean Medicine obesity clinics.
Methods: From January, 2017 to May, 2019, we collected data from overweight and obese adults (BMI≥23 ㎏/m2) who registered for a 3-month Gamitaeeumjowi-tang prescription program. Predictive analysis was conducted at the time of three prescriptions, and the expected reduced rate and reduced weight at the next order of prescription were predicted as binary classification (classification benchmark: highest quartile, median, lowest quartile). For the median, further analysis was conducted after using the variable selection method. The data set for each analysis was 25,988 in the first, 6,304 in the second, and 833 in the third. 5-fold cross validation was used to prevent overfitting.
Results: Prediction accuracy was increased from 1<SUP>st</SUP> to 2<SUP>nd</SUP> and 3<SUP>rd</SUP> analysis. After selecting the variables based on the median, artificial neural network showed the highest accuracy in 1<SUP>st</SUP> (54.69%), 2<SUP>nd</SUP> (73.52%), and 3<SUP>rd</SUP> (81.88%) prediction analysis based on reduced rate. The prediction performance was additionally confirmed through AUC, Random Forest showed the highest in 1<SUP>st</SUP> (0.640), 2<SUP>nd</SUP> (0.816), and 3<SUP>rd</SUP> (0.939) prediction analysis based on reduced weight.
Conclusions: The prediction of weight loss by applying machine learning showed that the accuracy was improved by using the initial weight loss information. There is a possibility that it can be used to screen patients who need intensive intervention when expected weight loss is low.

목차

서론
대상 및 방법
결과
고찰
결론
참고문헌

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-519-000679976