메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young Hyun Baek (UNION COMMUNITY)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.3
발행연도
2020.6
수록면
212 - 216 (5page)
DOI
10.5573/IEIESPC.2020.9.3.212

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Optical technology is the most common sensor technology currently used in fingerprint recognition. Because the optical type of sensor has excellent durability and stability, it is used for many people to authenticate. On the other hand, semiconductor-type sensors are suitable for personal authentication, such as smartphones. This study examined ways to improve the problem of optical sensors, i.e., the difficulty in extracting the fingerprint minutiae via binarization, and determine the difference between the ridge and valley of a fingerprint when there is a lot of water or sweat on the fingerprint surface. Therefore, the structure of the prism was designed to distinguish between sweat and water. SF4 material with a minor influence of the refractive index was applied. In addition, spherical lenses, G1 and G2, were designed and implemented to correct the trapezoidal distortion and reduce cost. To demonstrate the superiority of the study results, the image quality map of NIST and the minutiae distribution were compared using fingerprint recognition technology. The results showed that the proposed sensor has a high NFIQ quality score in all normal and moisture fingerprints.

목차

References
Abstract
1. Introduction
2. Proposed Optical Fingerprint Sensor Design
3. Simulation
4. Conclusion
References

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000684328