메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태환 (SK건설) 고태영 (SK건설) 박양수 (SK건설) 김택곤 (SK건설) 이대혁 (SK건설)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제30권 제3호(통권 제146호)
발행연도
2020.6
수록면
214 - 225 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
쉴드 TBM(Tunnel Boring Machine) 터널 굴착 시 암반의 상태는 굴진 성능을 결정하는 중요한 요소 중 하나이다. 암석 강도는 지반조사 시 실내시험을 통해 얻을 수 있으나, 전체 TBM 굴진 구간에 대해 모두 알 수 없다. TBM 굴진 시 최적 Operation Parameter를 적용하기 위해서는 굴진 속도에 영향을 미치는 암석 강도를 파악하는 것이 매우 중요하다. 이에 본 연구에서는 TBM 굴착 중 생성되는 기계 데이터와 머신러닝(Machine Learning) 기법을 활용하여 암석 강도를 예측하고자 한다. 암석 강도를 예측하기 위해 여러 머신러닝 기법을 사용하여 비교하였고, 가장 예측 성능이 좋은 스태킹 모델을 최종 모델로 선택하였다. 암반 구간 Slurry 쉴드 TBM 굴진 사례에서 지반조사 및 시공 중 조사한 암석 강도와 강도를 획득한 위치에서의 TBM 굴착 데이터를 사용하였다. TBM 굴착 데이터는 Training과 Test용으로 8:2로 분할하였으며, 변수 선택(feature selection), 표준화(scaling), 이상치(outlier) 제거 등 전처리 과정을 수행하였다. 하이퍼파라미터 튜닝까지 마친 후, 스태킹 모델에 대해 평균 제곱근 오차(Root Mean Square Error, RMSE)와 결정 계수(R2)로 모델을 평가한 결과 각각 5.556과 0.943로 나타났으며, TBM 굴착 데이터로 암석 강도를 예측하는 모델로 유용할 것으로 판단된다.

목차

ABSTRACT
초록
1. 서론
2. 배경 이론
3. 데이터 분석 및 머신러닝 기법 적용
4. 분석 결과
5. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-532-000856450