메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강지훈 (국방기술품질원) 김보람 (국방기술품질원) 김규영 (국방기술품질원) 이상훈 (국방기술품질원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제6호
발행연도
2020.6
수록면
679 - 686 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 화자인식 성능 향상을 위해 음원에서 개선된 특징추출 방식과 최소 분류 오차 기반의 다중 특징벡터 스코어에 대한 가중치 추정을 사용하여 스코어 결합을 제안하였다. 제안한 특징 벡터는 Glottal Flow에서 무의미한 정보구간인 평탄한 스펙트럼 구간을 제거하기 위하여 저역통과 필터를 수행한 신호에서 인지적 선형 예측 캡스트럼 계수, 왜도, 첨도를 추출하여 구성하였다. 제안한 특징 벡터는 종래의 음원에서 멜-주파수 캡스트럼 계수, 인지적 선형예측 캡스트럼 계수를 추출하여 가우시안 혼합 모델로 모델링한 화자인식 시스템을 개선하기 위해 사용된다. 또한, 스코어 추정과정의 신뢰성을 높이기 위하여 기존의 스코어의 확률 분포를 사용하여 가중치를 추정하는 대신 제안한 특징벡터에서 평가된 점수와 종래의 특징 벡터에서 평가된 점수에 대하여 최소 분류 오차 기법으로 가중치를 추정하여 스코어를 결합함으로써 최적의 화자를 찾는다. 실험 결과 제안한 특징 벡터가 화자를 인식하는데 유효한 정보를 포함하고 있는 것을 확인하였다. 또한, 최소 분류 오차 기반의 다중 특징 파라미터 스코어를 결합하여 화자인식을 수행하였을 때, 종래의 화자인식 성능보다 더 우수한 성능을 나타내는 것을 확인할 수 있으며, 특히 가우시안 혼합 모델이 낮을 때 더 높은 성능향상을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안한 방법
4. 실험 및 결과
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-505-000899830