메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노은솔 (공주대학교) 이사랑 (공주대학교) 홍석무 (공주대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제7호
발행연도
2020.7
수록면
285 - 291 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
제조 산업에서 인력은 로봇으로 대체되지만 전문 기술은 데이터 변환이 어려워 산업용 로봇에 적용이 불가능하다. 이는 비전 기반의 모션 인식 방법으로 데이터 확보가 가능하나 이미지 데이터에 따라 판단 값이 달라질 수 있다. 따라서 본 연구는 비전 방법을 사용해 사람의 자세를 추정 시 영향을 미치는 인자를 고려해 정확성 향상 방법을 찾고자 한다. 비전 방법 중 OpenPose의 3가지 모델 MPII, COCO 및 COCO + foot을 사용했으며, CNN(Convolutional Neural Networks)을 사용한 OpenPose 구조에서 얼굴 가림 및 이미지 전처리에 미치는 영향을 확인하고자 액세서리의 유무, 이미지 크기 및 필터링을 매개 변수로 설정했다. 각 매개 변수 별 이미지 데이터를 3 가지 모델에 적용해 실제 값과 예측 값 사이 거리 오차와 PCK (Percentage of correct Keypoint)로 영향도를 판단했다. 그 결과 COCO + foot 모델은 3 가지 매개 변수에 대한 민감도가 가장 낮았다. 또한 이미지 크기는 50% (원본 3024 × 4032에서 1512 × 2016로 축소) 이상 비율이 가장 적절하며, MPII 모델만 emboss 필터링을 적용할 때 거리 오차 평균이 최대 60pixel 감소되어 향상된 결과를 얻었다.

목차

요약
Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0