메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지훈 (세종대학교) 김정숙 (세종대학교)
저널정보
한국무역학회 무역학회지 貿易學會誌 第45卷 第3號
발행연도
2020.6
수록면
55 - 69 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study examines the research trends and knowledge structure of international trade studies using topic modeling method, which is one of the main methodologies of text mining. We collected and analyzed English abstracts of 1,868 papers of three Korean major journals in the area of international trade from 2003 to 2019. We used the Latent Dirichlet Allocation(LDA), an unsupervised machine learning algorithm to extract the latent topics from the large quantity of research abstracts. 20 topics are identified without any prior human judgement. The topics reveal topographical maps of research in international trade and are representative and meaningful in the sense that most of them correspond to previously established sub-topics in trade studies. Then we conducted a regression analysis on the document-topic distributions generated by LDA to identify hot and cold topics. We discovered 2 hot topics(internationalization capacity and performance of export companies, economic effect of trade) and 2 cold topics(exchange rate and current account, trade finance). Trade studies are characterized as a interdisciplinary study of three agendas(i.e. international economy, International Business, trade practice), and 20 topics identified can be grouped into these 3 agendas. From the estimated results of the study, we find that the Korean government’s active pursuit of FTA and consequent necessity of capacity building in Korean export firms lie behind the popularity of topic selection by the Korean researchers in the area of int’l trade.

목차

Abstract
Ⅰ. 서론
Ⅱ. 문헌 연구
Ⅲ. 연구 방법, 데이터 수집 및 처리
Ⅳ. 분석 결과
Ⅴ. 결론
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-324-000869691