메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제35권 제6호
발행연도
2019.1
수록면
1,117 - 1,132 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
산림생태계 내의 총일차생산량은 산림 자원 생산량과 직결되고, 산림생태계의 건강성, 산림식물계절및 생태계 서비스의 중요한 지표가 된다. 이 연구에서는 인공위성 자료와 기계학습 알고리즘을 활용하여 우리나라의 산림유역의 총일차생산량을 연구하였다. 에디공분산 타워가 있는 6개 지점에서의 MODIS (Moderate Resolution Imaging Spectroradiometer) 산출물과 에디공분산타워의 총일차생산성으로 연구기간의 75%–80%에해당하는 자료로 기계학습 알고리즘을 훈련하고 나머지 기간으로 구축된 모델의 총일차생산성 예측 결과를검증하였다. 모델을 구축할 때 MODIS 지상 산출물과 대기 산출물을 조합하여 새로운 입력자료(e.g., 포화수증기압차)를 모델의 입력자료(Processed MODIS)로 사용하였을 때와 이러한 과정 없이 QC(Quality control)만 거친 MODIS 산출물을 그대로 입력자료(Unprocessed MODIS)로 사용하였을 때의 총일차생산량을 비교해 보고그 활용 가능성에 대해 고찰하였다. 추가로 MODIS 총일차생산량 산출물(MYD17)과 에디공분산 총일차생산성 및 기계학습 알고리즘 기반의 총일차생산성과의 상관관계를 보고 그 적합성에 대해 논의하였다. 이 연구에서 사용된 기계학습 알고리즘은 Support Vector Machine (SVM)으로 산림생태계 연구에서 가장 많이 사용되고있는 기계학습 알고리즘 중 하나이다. 기계학습 알고리즘 기반(SVM 모델)의 총일차생산량 예측 결과는MODIS 총일차생산량 산출물(MYD17)보다 에디공분산 총일차생산량과 전반적으로 높은 상관관계를 보였고특히 식생 성장을 시작하는 시점의 값을 좀 더 잘 예측하는 결과를 보였다. 단일 지역에서 Unprocessed MODIS 입력자료로 훈련된 SVM 모델 결과는 피어슨 상관계수 0.75 – 0.95 (p < 0.001), 6개의 연구 지점에서 훈련된 SVM 모델 결과는 피어슨 상관계수 0.77 – 0.94 (p < 0.001) 사이를 보였다. 이 결과는 훈련 자료에 다양한 이벤트들이포함되면 모델의 예측력이 향상되는 가능성을 보여주었고 위성영상의 산출물을 재계산하여 새로운 산출물을내는 과정을 거친 위성 자료가 아니어도 그 예측력에는 크게 문제가 없음을 보여주었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0