메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제3호
발행연도
2020.1
수록면
487 - 501 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
이 연구에서는 고해상도 위성영상을 이용하여 지표면 온도를 산출하는 기존의 여러가지 방법 이외에보다 새로운 접근으로, 인공지능 기반의 심층신경망 기법을 148장의 Landsat 8 영상에 적용하여 우리나라 지표면온도를 산출하고 그 적합성을 평가하였다. Landsat 8 열적외 10번 밴드(약 11 μm 파장대)의 밝기온도와 방출률은 물리방정식에 경험상수가 결합하여 도출된 값이기 때문에, 지역적 기상, 기후, 지형, 식생 등의 조건에 따른불확실성을 내포하고 있다. 이를 보완하기 위하여 본 연구에서는 밝기온도와 방출률로부터 지표면온도 초기추정치 T0를 산출하고 이와 함께, NDVI, 토지피복, 지형요소(고도, 경사, 향, 거칠기) 등을 입력변수로 하는 계절별심층신경망 모델을 최적화하여 지표면온도를 산출하였다. 이는 ASOS(Automated Synoptic Observing System)와의 선형관계식으로 편의보정을 수행하는 기존 방법에 비해 진보된 기법이다. ASOS 관측치와 시공간적으로 일치되는 1,728건의 자료를 비교한 결과, 계절별로 차이가 있기는 하지만 특히 봄, 가을에는 상당히 좋은 결과를 보였으며(CC=0.910~0.917, RMSE=3.245~3.365°C), 또한 토지피복 유형에 상관없이 안정적인 산출이 이루어짐을확인하였다. 향후 Landsat 5/7/8 자료의 장기시계열 빅데이터와 함께 추가적인 지표면변수를 활용하여 모델링을 수행함으로써 기후변화 및 특이기상 하에서도 보다 신뢰도 높은 고해상도 지표면온도 산출이 필요할 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0