메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한재활의학회 Annals of Rehabilitation Medicine Annals of Rehabilitation Medicine 제43권 제5호
발행연도
2019.1
수록면
544 - 554 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective To develop and standardize the Limb and Oral Apraxia Test (LOAT) for Korean patients and investigate its reliability, validity, and clinical usefulness for patients with stroke. Methods We developed the LOAT according to a cognitive neuropsychological model of limb and oral praxis. The test included meaningless, intransitive, transitive, and oral praxis composed of 72 items (56 items on limb praxis and 16 items on oral praxis; maximum score 216). We standardized the LOAT in a nationwide sample of 324 healthy adults. Intra-rater and inter-rater reliability and concurrent validity tests were performed in patients with stroke. We prospectively applied the LOAT in 80 patients and analyzed the incidence of apraxia. We also compared the clinical characteristics between the apraxia and non-apraxia groups. Results The internal consistency was high (Cronbach’s alpha=0.952). The inter-rater and intra-rater reliability and concurrent validity were also high (r=0.924–0.992, 0.961–0.999, and 0.830, respectively; p<0.001). The mean total, limb, and oral scores were not significantly different according to age and education (p>0.05). Among the 80 patients with stroke, 19 (23.8%) had limb apraxia and 21 (26.3%) had oral apraxia. Left hemispheric lesions and aphasia were significantly more frequently observed in the limb/oral apraxia group than in the non-apraxia group (p<0.001). Conclusion The LOAT is a newly developed comprehensive test for limb and oral apraxia for Korean patients with stroke. It has high internal consistency, reliability, and validity and is a useful apraxia test for patients with stroke.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0