메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신학회 한국전자통신학회 논문지 한국전자통신학회 논문지 제14권 제6호
발행연도
2019.1
수록면
1,249 - 1,256 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 보청기의 음향궤환 및 잡음을 제거하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 기존의 FIR 구조를 이용하는 대신 신경망 적응예측필터를 이용한 심층학습 알고리즘으로 궤환 및 잡음제거 성능을 향상시킨다. 먼저 궤환제거기가 마이크 신호에서 궤환신호를 제거하고, 이어서 Wiener 필터기법을 이용하여 잡음을 제거한다. 잡음 제거는 음성신호가 가진 주기적 성질에 따라 선형예측모델을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정해내는 것이다. 한 루프 안에 포함된 두 적응 시스템의 안정적 수렴을 보장하기 위해 궤환제거기 및 잡음제거기의 계수 업데이트를 분리하여 실시하며 제거 후 생성된 잔차신호를 이용하여 수렴시키는 과정을 진행한다. 본 연구에서 제안한 궤환 및 잡음제거기의 성능을 검증하기 위하여 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 FIR 구조를 사용하는 경우보다 궤환제거기에서 약 10 dB의 SFR(Signal to Feedback Ratio), 잡음제거기에서 약 3 dB의 SNRE(Signal to Noise Ratio Enhancement) 개선효과를 얻을 수 있는 것으로 확인되었다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0