메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종만 (한화시스템) 김기훈 (한화시스템) 박현 (한화시스템) 최증원 (국방과학연구소) 김경우 (국방과학연구소) 배성호 (경희대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제4호
발행연도
2020.7
수록면
609 - 619 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
고품질 비디오 스트리밍 요구에 따라 제한된 대역폭에서 높은 전송률이 필요하고, 트래픽 혼재 상황이 더 발생한다. 특히 실시간 영상 서비스를 제공 시 패킷 손실 및 비트 오류 확률이 더 크게 증가한다. 이러한 문제를 해결하기 위해 실시간 서비스 품질향상을 위한 방법으로 FEC 기술의 한 종류인 랩터 코드가 어플리케이션 영역에서 활발히 사용되고 있다. 본 논문에서는 랩터 코드를 활용하여 유사한 수준의 화질에서 전송 효율을 높이기 위한 다양한 심층 신경망(Deep Neural Network, DNN) 기반 영상전송 파라미터를 결정하는 방법을 제안한다. 제안된 신경망은 패킷 손실율(Packet Loss Rate), 비디오 인코딩 속도 및 전송속도를 입력으로 사용하고 랩터 FEC 파라미터와 패킷 크기를 출력으로 한다. 제안한 방법은 기존 멀티미디어 전송 기법과 유사한 수준의 PSNR(Peak Signal-to-Noise Ratio)에서 전송 효율을 최적화하여 평균 1.2% 높은 스루풋(throughput)을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. DNN 제안 구조
Ⅳ. 시험결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001085127