메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
최현일 (Department of Civil Engineering, Yeungnam University) 지홍기 (Department of Civil Engineering, Yeungnam University) 김응석 (Department of Civil Engineering, Sun Moon University)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2009년도 학술발표회 초록집
발행연도
2009.1
수록면
529 - 534 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0