메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Yamaguchi, Kosei (Institute of Sustainability Science, Kyoto University) Nakakita, Eiichi (Disaster Prevention Research Institute, Kyoto University) Sumida, Yasuhiko (Graduate School of Engineering, Kyoto University)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2009년도 학술발표회 초록집
발행연도
2009.1
수록면
2,161 - 2,166 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is important for 0-6 hour nowcasting to provide for a high-quality initial condition in a meso-scale atmospheric model by a data assimilation of several observation data. The polarimetric radar data is expected to be assimilated into the forecast model, because the radar has a possibility of measurements of the types, the shapes, and the size distributions of hydrometeors. In this paper, an impact on rainfall prediction of the data assimilation of hydrometeor types (i.e. raindrop, graupel, snowflake, etc.) is evaluated. The observed information of hydrometeor types is estimated using the fuzzy logic algorism. As an implementation, the cloud-resolving nonhydrostatic atmospheric model, CReSS, which has detail microphysical processes, is employed as a forecast model. The local ensemble transform Kalman filter, LETKF, is used as a data assimilation method, which uses an ensemble of short-term forecasts to estimate the flowdependent background error covariance required in data assimilation. A heavy rainfall event occurred in Okinawa in 2008 is chosen as an application. As a result, the rainfall prediction accuracy in the assimilation case of both hydrometeor types and the Doppler velocity and the radar echo is improved by a comparison of the no assimilation case. The effects on rainfall prediction of the assimilation of hydrometeor types appear in longer prediction lead time compared with the effects of the assimilation of radar echo only.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0