메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
추연문 (영남대학교 공과대학 건설시스템공학과) 권기대 (영남대학교 공과대학 건설시스템공학과) 지홍기 (영남대학교 공과대학 건설시스템공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2012년도 학술발표회
발행연도
2012.1
수록면
301 - 304 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
홍수예경보는 강우로 인하여 발생되는 홍수의 규모와 시간을 가능한 한 정확하고 빨리 예측하여 홍수에 대비할 수 있도록 유관기관 및 지역주민에게 사전에 홍수에 관한 정보 즉 예측되는 수위와 시간을 제공함으로써 홍수로부터의 피해를 최소화하는 것이다. 이와 같은 목적을 성공적으로 완수하기 위해서는 홍수시 급변하는 하천유량에 영향을 미치는 모든 수문학적 기상학적 자료를 신속 정확하게 수집할 수 있는 관측 시스템의 구축 뿐 아니라 이들 수집된 자료를 이용하여 실시간 홍수추적을 할 수 있는 효율적인 유출량 계산모형이 조화를 이룰 때 가능하다. 이에 본 연구에서는 중 소하천에서 홍수예경보를 위한 지능형 U-River 시스템의 실시간 모니터링 기술을 조사하고 하천수위를 이용한 예측시스템에 대해 연구하였다. 기존의 홍수예경보의 문제점을 해결하기 위해 간단한 입력자료만으로 홍수예측이 가능한 인공지능 기반의 신경망 모형을 이용 하였으며, 예측 모형의 효율성과 적용성을 높이기 위해 유사한 수문 사상을 가지는 상 하류간 입력 자료를 동시에 사용하였다. 또한 하천수위를 이용한 모델의 수행은 각 지점별 훈련성과를 토대로 최적의 은닉층 노드수를 선발하여 실시간 수위예측에 활용하였으며 수치적 기준을 적용하여 실측 수위와 모형에 의해 예측된 수위를 이용하여 평가하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0