메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
정의석 (한국전자통신연구원, 음성처리연구실) 박전규 (한국전자통신연구원, 음성처리연구실)
저널정보
한국어정보학회 한국어정보학회 학술대회 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
발행연도
2016.1
수록면
217 - 219 (3page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 형태소 분석 및 품사 태깅을 위해 seq2seq 주의집중 모델을 이용하는 접근 방법에 대하여 기술한다. seq2seq 모델은 인코더와 디코더로 분할되어 있고, 일반적으로 RNN(recurrent neural network)를 기반으로 한다. 형태소 분석 및 품사 태깅을 위해 seq2seq 모델의 학습 단계에서 음절 시퀀스는 인코더의 입력으로, 각 음절에 해당하는 품사 태깅 시퀀스는 디코더의 출력으로 사용된다. 여기서 음절 시퀀스와 품사 태깅 시퀀스의 대응관계는 주의집중(attention) 모델을 통해 접근하게 된다. 본 연구는 사전 정보나 자질 정보와 같은 추가적 리소스를 배제한 end-to-end 접근 방법의 실험 결과를 제시한다. 또한, 디코딩 단계에서 빔(beam) 서치와 같은 추가적 프로세스를 배제하는 접근 방법을 취한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0