메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김병현 (경북대학교 방재연구소) 한건연 (경북대학교 토목공학과)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2015년도 학술발표회
발행연도
2015.1
수록면
43 - 43 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
천수방정식을 사용하는 초기 수치모형은 프로드수($F_4$)가 변화하는 흐름 즉, 상류방향과 하류방향으로 전파하는 홍수파를 동시에 해석하기 위해 중앙 차분기법이 필요한 상류(sub-critical flow)와 흐름방향에 따른 상류이송(upwinding)기법이 필요한 사류(super-critical flow)가 나타나는 흐름해석에서 어려움이 있었다. 하지만, 근사 Riemann 해법의 등장으로 흐름방향에 관계없이 특성선을 따라 정확한 상향가중기법의 적용이 가능하게 되어, 천수방정식을 지배방정식으로 하는 수치모형이 더욱 실용적으로 적용될 수 있도록 하였다. 따라서, 현재 근사 Riemann 해법은 Godunov 형 유한체적 기법, 불연속 Galerkin 혹은 Petrov-Galerkin 유한요소기법 그리고 Boussinesq 기법에도 적용되고 있으며, 특히 Godunov 형 유한체적기법과 결합한 근사 Riemann 해법은 댐 붕괴, 하천 범람 그리고 도시 및 해안지역 침수에 이르기까지 여러 가지 문제에 폭넓게 적용되고 있다. 지금까지 홍수 모델링에 적용된 Godunov형 유한체적모형은 정형 사각격자나 비정형 삼각격자 중에서 한가지의 격자 종류만을 적용한 연구가 주로 수행되었으며, 유한요소모형과 같이 이 두 가지 격자를 동시에 적용한 연구는 거의 이루어지지 않고 있다. 일반적으로, 삼각격자는 사각격자와 는 달리 연구유역의 경계나 지형이 복잡한 경우에도 큰 노력없이 격자의 생성이 가능하나, 격자와 노드의 수가 사각격자보다 많아 계산시간이 많이 소요되는 단점이 있다. 반면, 사각격자는 하천과 같이 선형으로 변하는 지형에 대해서는 표현하기가 용이하며 계산시간의 효율성도 뛰어나다. 본 연구에서는 하천, 도시 그리고 해안지역에서의 효율적이고 정확한 홍수 모델링을 위해 삼각 및 사각격자 그리고 이 두 격자를 동시에 고려한 하이브리드 격자의 적용이 가능한 Godunov형 2차원 유한체적 모형을 개발하였다. 그리고 개발모형을 정확해가 있는 댐 붕괴 문제, 실측치가 존재하는 실험하도 및 실제하도에 삼각, 사각 그리고 혼합격자를 생성하여 모의를 수행하고, 각 적용 격자에 따른 정확성과 효율성 및 장점과 단점을 연구하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0