메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Ohta, Mitsuo (Dept of Electronic Engg. and Computer Science, Faculty of Engg., Kinki University) Ogawa, Hitoshi (Dept. of Electronic Control and Engg., Hiroshima Natinal College of Maritime Technology)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
발행연도
1994.1
수록면
692 - 697 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In the actual sound environmental systems, it seems to be essentially difficult to exactly evaluate a whole probability distribution form of its response fluctuation, owing to various types of natural, social and human factors. Up to now, we very often reported two kinds of unified probability density expressions in the standard expansion from of Hermite and Laguerre type orthonormal series to generally evaluate non-Gaussian, non-linear correlation and/or non-stationary properties of the fluctuation phenomenon. However, in the real sound environment, there still remain many actual problems on the necessity of improving the above two standard type probability expressions for practical use. In this paper, first, a central point is focused on how to find a new probabilistic theory of practically evaluating the variety and complexity of the actual random fluctuations, especially through introducing some equivalence transformation toward two standard probability density expressions mentioned above in the expansion from of Hermite and Laguerre type orthonormal series. Then, the effectiveness of the proposed theory has been confirmed experimentally too by applying it to the actual problems on the response probability evaluation of various sound insulation systems in an acoustic room.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0