메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양진우 (광운대학교 전자계산기공학과, 신기술 연구소) 김순협 (광운대학교 전자계산기공학과, 신기술 연구소)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제14권 제5호
발행연도
1995.1
수록면
74 - 82 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 HMM과 연결 숫자음의 후처리를 이용한 음성 다이얼링에 관한 연구이다. HMM(Hidden Markov Model)은 좋은 결과를 보이면서 현재 음성 인식 분야에서 널리 사용되는 알고리즘이다. 그러나, HMM의 학습 방법인 maximum like-lihood estimation은 인식률을 극대화하는 모델의 파라메터 값을 생성하지 못하는 단점이 었다. 이러한 문제점을 보완하기 위하여 Segmental K-means 학습 과정에 후저리를 이용하여 인식 실험을 하였다. 한국어 연속 숫자음은 영어 연속 숫자음과 달리 연음 현상의 영향을 많이 받는다. Level Building 과정에서 연음에 의한 오류를 감소시키기 위해 연음에 의해 발생할 수 있는 단어를 별도의 모델로 추가하였다. 이렇게 추가된 단어 모델들에 대한 몇 가지 규칙을 인식 결과에 적용하여 출력을 다시 조정한다. 본 시 스템은 TMS320C30 프로세서를 내장한 DSP 보드와 IBM PC 상에서 구현되었고, 표준 패턴은 실험실 잡음 환경에서 남성 화자3명을 대상으로 작성하였다. 인식 실험 결과 21종 전화 번호 252개 데이타에 대하여 화자 종속의 경우 $91.6\%$, 회자 독립의 경우 $80.5\%$의 인식률을 나타내었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0