메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kulikov, G.Yu (Department of Mathematics and Mechanics Ulyanovsk State university) Shindin, S.K. (Department of Mathematics and Mechanics Ulyanovsk State university)
저널정보
한국전산응용수학회 The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A 제6권 제3호
발행연도
1999.1
수록면
697 - 726 (30page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper we develop a now procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. in contrast to the standard approach the error control mechanism presented here is based on monitoring and contolling both the local and global errors of multistep formulas. As a result such methods with the local-global stepsize control solve differential-algebraic equation with any prescribed accuracy (up to round-off errors). For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approxima-tions to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the the-oretical results of the paper.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0