메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한학용 (동아대학교 전자공학과) 김주성 (동아대학교 전자공학과) 허강인 (동아대학교 전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제18권 제3호
발행연도
1999.1
수록면
62 - 67 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 회귀신경망을 이용한 음성인식에 관한 연구이다. 예측형 신경망으로 음절단위로 모델링한 후 미지의 입력음성에 대하여 예측오차가 최소가 되는 모델을 인식결과로 한다. 이를 위해서 예측형으로 구성된 신경망에 음성의 시변성을 신경망 내부에 흡수시키기 위해서 회귀구조의 동적인 신경망인 회귀예측신경망을 구성하고 Elman과 Jordan이 제안한 회귀구조에 따라 인식성능을 서로 비교하였다. 음성DB는 ETRI의 샘돌이 음성 데이터를 사용하였다. 그리고, 신경망의 최적모델을 구하기 위하여 예측차수와 은닉층 유니트 수의 변화에 따른 인식률의 변화와 문맥층에서 자기회귀계수를 두어 이전의 값들이 문맥층에서 누적되도록 하였을 경우에 대한 인식률의 변화를 비교하였다. 실험결과, 최적의 예측차수, 은닉층 유니트수, 자기회귀계수는 신경망의 구조에 따라 차이가 나타났으며, 전반적으로 Jordan망이 Elman망보다 인식률이 높았으며, 자기회귀계수에 대한 영향은 신경망의 구조와 계수값에 따라 불규칙하게 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0