메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yun, Min-Young (Division of Computer Engineering, Sungkyul University) Keum, Young-Wook (Division of Computer Engineering, Sungkyul University)
저널정보
한국전산응용수학회 The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A The Korean journal of computational & applied mathematics, 한국전산응용수학술지 Series A 제9권 제1호
발행연도
2002.1
수록면
239 - 252 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A sort sequence $S_n$ is sequence of all unordered pairs of indices in $I_n$={1,2,…n}. With a sort sequence $S_n$ = ($s_1,S_2,...,S_{\frac{n}{2}}$),one can associate a predictive sorting algorithm A($S_n$). An execution of the a1gorithm performs pairwise comparisons of elements in the input set X in the order defined by the sort sequence $S_n$ except that the comparisons whose outcomes can be inferred from the results of the preceding comparisons are not performed. A sort sequence is said to be extremal if it maximizes a given objective function. First we consider the extremal sort sequences with respect to the objective function $\omega$($S_n$) - the expected number of tractive predictions in $S_n$. We study $\omega$-extremal sort sequences in terms of their prediction vectors. Then we consider the objective function $\Omega$($S_n$) - the minimum number of active predictions in $S_n$ over all input orderings.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0