메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Mi-Kyung (Kookmin Credit Card Ltd. Co.) Huh, Myung-Hoe (Department of Statistics, Korea University)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제31권 제4호
발행연도
2002.1
수록면
519 - 532 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
K-means clustering is a well-known partitioning method of multivariate observations. Recently, the method is implemented broadly in data mining softwares due to its computational efficiency in handling large data sets. However, it does not yield a suitable visual display of multivariate observations that is important especially in exploratory stage of data analysis. The aim of this study is to develop a K-means clustering method that enables visual display of multivariate observations in a low-dimensional space, for which the projection pursuit method is adopted. We propose a computationally inexpensive and reliable algorithm and provide two numerical examples.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0