메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
주신하 (신구대학 환경조경과) 임승빈 (서울대학교 조경학과)
저널정보
한국조경학회 한국조경학회지 한국조경학회지 제31권 제1호
발행연도
2003.1
수록면
1 - 10 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to categorize a landscape adjective list for urban landscape analysis. For this purpose, four methods are used. The first method is to survey the foreign landscape adjective lists such as Feimer's EACL & LACL, VRM suggested vocabulary, and IEA and LI's aesthetic factors, which are commonly used in domestic research. The second method is to analyze vocabulary in Korean linguistic textbook the third is to investigate Korean adjective lists from 36 domestic research. The last is to survey adjectives used to express the urban landscapes. 24 landscapes from BunDdang, GwaCheon, YakSoo and ApGuJeong were presented to 40 subjects, whose responses were collected and categorized. The frequency analysis of the adjectives and landscape factors were processed by SJTOOL, which was programmed for Korean vocabulary analysis. The results of this study can be summarized as follows: Foreign adjective lists were mainly focused on the physical features of landscapes and they also had linguistic problems caused by the translations. Therefore, it is undesirable to use the foreign adjective list directly to analyze Korean urban landscapes. The vocabulary from the linguistic textbook has more variety, but it includes many adjectives irrelevant to the urban landscape. More types of adjectives were used in the researches(890 adjectives/295 types), compared with the result of response survey(1,406 adjectives/270 types). Because some adjectives were partly confusing, it is desirable to categorize the adjectives. The categorized adjectives could therefore be more useful and practical for urban landscape analysis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0