메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임준형 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 김정호 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 장석헌 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 김규태 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 이진성 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 윤경민 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 주진호 (The School of Metallurgical and Materials Engineering, Sungkyunkwan University) 김찬중 (Nuclear Material Development Team, Korea Atomic Energy Research Institute) 하홍수 (Applied Superconductivity Research Group, Korea Electrotechnology Research Institute) 박찬 (Applied Superconductivity Research Group, Korea Electrotechnology Research Institute)
저널정보
한국초전도학회 Progress in superconductivity Progress in superconductivity 제6권 제2호
발행연도
2005.1
수록면
133 - 137 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We fabricated the Au/Ni template for YBCO coated conductors and evaluated texture formation and the microstructural evolution. The cube textured Ni substrate was fabricated by rolling and recrystallization annealing, and subsequently Au layer formed on the substrate by electroless-plating method. The texture was evaluated by pole-figure with x-ray goniometer with orientation distribution function (ODF) analysis. The surface roughness and grain boundary morphology of template were characterized by atomic force microscopy (AFM) We observed that Au layer deposited epitaxially on Ni substrate and formed a strong cube texture when plating time was optimized. The full-width at half-maximum (FWHM) was $8.4^{\circ}$ for out-of-plane and $9.98^{\circ}$ for in-plane texture for plating time of 30 min. Microstructural observation showed that the Au layer was homogeneous and dense without formation of crack/microcrack. In addition, we observed that root-mean-square (RMS) and depth of grain boundary were 14.6 nm and 160 $\AA$ for the Au layer, respectively, while those were 27.0 nm and 800 $\AA$ for the Ni substrate, indicating that the electoless-plated Au layer had relatively smooth surface and effectively mollified grain groove.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0