메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이종남 (경희대학교) 김채원 (인덕전문대학) 황창현 (우보기술단)
저널정보
한국수자원학회 물과 미래 : 한국수자원학회지 물과 미래 : 한국수자원학회지 제25권 제1호
발행연도
1992.1
수록면
93 - 100 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Abstract A study on the Derivation of the Unit Hydrograph using Multiple Regression Moe이. The purpose of this study is to deriver an optimal unit hydrograph suing the multiple regression model, particularly when only small amount of data is available. The presence of multicollinearity among the input data can cause serious oscillations in the derivation of the unit hydrograph. In this case, the oscillations in the unit hydrograph ordinate are eliminated by combining the data. The data used in this study are based upon the collection and arrangement of rainfall-runoff data(1977-1989) at the Soyang-river Dam site. When the matrix X is the rainfall series, the condition number and the reciprocal of the minimum eigenvalue of XTX are calculated by the Jacobi an method, and are compared with the oscillation in the unit hydrograph. The optimal unit hydrograph is derived by combining the numerous rainfall-runoff data. The conclusions are as follows; 1)The oscillations in the derived unit hydrograph are reduced by combining the data from each flood event. 2) The reciprocals of the minimum eigen\value of XTX, 1/k and the condition number CN are increased when the oscillations are active in the derived unit hydrograph. 3)The parameter estimates are validated by extending the model to the Soyang river Dam site with elimination of the autocorrelation in the disturbances. Finally, this paper illustrates the application of the multiple regression model to drive an optimal unit hydrograph dealing with the multicollinearity and the autocorrelation which cause some problems.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0