메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박현화 (한국전자통신연구소 TDX개발단) 강해동 (경북대학교 전자공학과) 배건ㅅ성 (경북대학교 전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제11권 제3호
발행연도
1992.1
수록면
5 - 13 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
한국어 숫자음이 단음절인 특성을 이용하여 각 숫자음에 대해 시간정합을 필요로 하지 않으면서 일정한 수를 갖는 특징벡터를 추출하여 다층구조 신경망으로 인식실험을 하였다. 음성신호의 시작점/끝점과 더불어 모음의 최대 피크점을 기준으로 해석구간을 초성, 중성, 종성의 세 부분으로 나누었으며, 음성신호의 특징벡터로는 반사계수, 켑스트럼, ${\Delta}$켑스트럼, ${\Delta}$에너지 등을 이용하여, 각 특징벡터 및 입력층과 은닉층의 노드 수에 따른 인식율 및 학습속도 등을 비교하였다. 신경망의 입력층의 특징벡터로서 반사계수를 사용한 경우보다 켑스트럼을 사용했을 때가 더 좋은 인식율을 보였다. ${\Delta}$켑스트럼의 특성이 전체 인식율에 미치는 영향이 그다지 크지 않았는데, 이는 한국어 숫자음이 단음절로 구성되어 있는 특징을 이용해 분석 구간을 stationary한 특성을 갖는 세 부분으로 구분하였기 때문이라 생각된다. 각 숫자음에 대해 150개의 켑스트럼을 사용한 경우에 97.8%의 인식율을 얻었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0