메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chen, Huanzhen (Department of Mathematics, Shandong Normal University) Jiang, Ziwen (Department of Mathematics, Shandong Normal University)
저널정보
한국전산응용수학회 Journal of applied mathematics & computing Journal of applied mathematics & computing 제15권 제1호
발행연도
2004.1
수록면
29 - 51 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we propose a new mixed finite element method, called the characteristics-mixed method, for approximating the solution to Burgers' equation. This method is based upon a space-time variational form of Burgers' equation. The hyperbolic part of the equation is approximated along the characteristics in time and the diffusion part is approximated by a mixed finite element method of lowest order. The scheme is locally conservative since fluid is transported along the approximate characteristics on the discrete level and the test function can be piecewise constant. Our analysis show the new method approximate the scalar unknown and the vector flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. Numerical example is presented to show that the new scheme is easily implemented, shocks and boundary layers are handled with almost no oscillations. One of the contributions of the paper is to show how the optimal error estimates in $L^2(\Omega)$ are obtained which are much more difficult than in the standard finite element methods. These results seem to be new in the literature of finite element methods.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0