메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김연수 (전남대학교) 고영훈 (전남대학교) 엄익채 (전남대학교) 김경백 (전남대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제4호
발행연도
2020.8
수록면
669 - 677 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷 사용자가 폭발적으로 늘어나면서 웹을 이용한 공격이 증가했다. 뿐만 아니라 기존의 방어 기법들을 우회하기 위해 공격 패턴이 다양해졌다. 전통적인 웹 방화벽은 알져지지 않은 패턴의 공격을 탐지하기 어렵다. 따라서 인공지능으로 비정상을 탐지하는 방식이 대안으로 연구되고 있다. 특히 공격에 악용되는 스크립트나 쿼리가 텍스트로 이루어져 있다는 이유로 자연어 처리 기법을 적용하는 시도가 일어나고 있다. 하지만 스크립트나 쿼리는 미등록 단어(Unknown word)가 다량 발생하기 때문에 자연어 처리와는 다른 방식의 접근이 필요하다. 본 논문에서는 BPE(Byte Pair Encoding)기법으로 웹 공격 페이로드에 자주 사용되는 토큰 집합을 추출하여 임베딩 벡터를 학습시키고, 주의 메커니즘 기반의 Bi-GRU 신경망으로 토큰의 순서와 중요도를 학습하여 웹 공격을 분류하는 모델을 제안한다. 주요 웹 공격인 SQL 삽입 공격, 크로스 사이트 스크립팅, 명령 삽입 공격에 대하여 분류 평가 결과 약 0.9990의 정확도를 얻었으며, 기존 연구에서 제안한 모델의 성능을 상회하는 결과를 도출하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안하는 웹 공격 페이로드 분류 모델
IV. 실험 및 평가
V. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001142210