메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국토양비료학회 한국토양비료학회지 한국토양비료학회지 제53권 제3호
발행연도
2020.8
수록면
345 - 354 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was carried out to classify country-wide areas of paddy rice cultivation using sentinel-1 SAR (synthetic aperture radar) imagery. Rice production with adequate level of area is important for decision making of rice supply and demand policy. It is essential to grasp rice cultivation areas in advance for estimating rice production of the year. Time-series Sentinel-1A and 1B images acquired from early May to early July were processed to convert into sigma naught (㏈) images using SNAP (SeNtinel application platform) toolbox provided by European Space Agency. Farm map and parcel map, which are spatial data of vector polygon, were used to stratify paddy field population for classifying rice paddy cultivation. To distinguish paddy rice from other crops grown in the paddy fields, threshold levels were determined for each image based on crop calendar and backscattering coefficient range of paddy rice and other crops, and applied for the images to make theme maps with “1” for rice and “0” for other crops. Theme map layers were stacked to make one image and the each threshold value was applied to the theme map for rice classification. The classified areas of rice cultivation in 2020 under the stratification of three different paddy field population, 1) whole farm map, 2) farm map with paddy and plastic film house, 3) parcel map edited by LX, were 716,683 ㏊, 621,778 ㏊, and 641,679 ㏊, respectively. Reference data with spatial information need to be developed using farmhouse management and farmland boundary information. Image classification methods need to be attempted for further studies.

목차

ABSTRACT
Introduction
Materials and Methods
Results and Discussion
Conclusions
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-523-001160174