메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김종기 (Division of Management, College of Business, Pusan National University) 전진환 (Institute of Management and Economics, Pusan National University)
저널정보
한국경영정보학회 Asia pacific journal of information systems Asia pacific journal of information systems 제19권 제4호
발행연도
2009.1
수록면
47 - 75 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, researches on Management Information Systems (MIS) have laid out theoretical foundation and academic paradigms by introducing diverse theories, themes, and methodologies. Especially, academic paradigms of MIS encourage a user-friendly approach by developing the technologies from the users' perspectives, which reflects the existence of strong causal relationships between information systems and user's behavior. As in other areas in social science the use of structural equation modeling (SEM) has rapidly increased in recent years especially in the MIS area. The SEM technique is important because it provides powerful ways to address key IS research problems. It also has a unique ability to simultaneously examine a series of casual relationships while analyzing multiple independent and dependent variables all at the same time. In spite of providing many benefits to the MIS researchers, there are some potential pitfalls with the analytical technique. The research objective of this study is to provide some guidelines for an appropriate use of SEM based on the assessment of current practice of using SEM in the MIS research. This study focuses on several statistical issues related to the use of SEM in the MIS research. Selected articles are assessed in three parts through the meta analysis. The first part is related to the initial specification of theoretical model of interest. The second is about data screening prior to model estimation and testing. And the last part concerns estimation and testing of theoretical models based on empirical data. This study reviewed the use of SEM in 164 empirical research articles published in four major MIS journals in Korea (APJIS, ISR, JIS and JITAM) from 1991 to 2007. APJIS, ISR, JIS and JITAM accounted for 73, 17, 58, and 16 of the total number of applications, respectively. The number of published applications has been increased over time. LISREL was the most frequently used SEM software among MIS researchers (97 studies (59.15%)), followed by AMOS (45 studies (27.44%)). In the first part, regarding issues related to the initial specification of theoretical model of interest, all of the studies have used cross-sectional data. The studies that use cross-sectional data may be able to better explain their structural model as a set of relationships. Most of SEM studies, meanwhile, have employed. confirmatory-type analysis (146 articles (89%)). For the model specification issue about model formulation, 159 (96.9%) of the studies were the full structural equation model. For only 5 researches, SEM was used for the measurement model with a set of observed variables. The average sample size for all models was 365.41, with some models retaining a sample as small as 50 and as large as 500. The second part of the issue is related to data screening prior to model estimation and testing. Data screening is important for researchers particularly in defining how they deal with missing values. Overall, discussion of data screening was reported in 118 (71.95%) of the studies while there was no study discussing evidence of multivariate normality for the models. On the third part, issues related to the estimation and testing of theoretical models on empirical data, assessing model fit is one of most important issues because it provides adequate statistical power for research models. There were multiple fit indices used in the SEM applications. The test was reported in the most of studies (146 (89%)), whereas normed-test was reported less frequently (65 studies (39.64%)). It is important that normed- of 3 or lower is required for adequate model fit. The most popular model fit indices were GFI (109 (66.46%)), AGFI (84 (51.22%)), NFI (44 (47.56%)), RMR (42 (25.61%)), CFI (59 (35.98%)), RMSEA (62 (37.80)), and NNFI (48 (29.27%)). Regarding the test of construct validity, convergent validity has been examined in 109 studies (66.46%) and discriminant validity in 98 (59.76%). 81 studies (49.39%) have reported the

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0