메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Venkatesa Prabhu, Sundramurthy (Department of Biotechnology, Centre for Research, K.S. Rangasamy College of Technology) Baskar, Rajoo (Department of Chemical Engineering, Centre for Research, Kongu Engineering College)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제58권 제2호
발행연도
2015.1
수록면
185 - 194 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The removal of heavy metals from industrial sludge through biosolubilization using sulfur-oxidizing bacteria has been shown to be a promising technology, but the process with surplus concentration of sulfur causes re-acidification of the treated residues and creates environmental issues. Thus, the study for investigating the effect of sulfur concentration on the heavy metal biosolubilization system, with an emphasis on optimizing the sulfur concentration, is of immense importance. In this study, the experiments to investigate the effect of sulfur concentration on the performance of biosolubilization were carried out using 2-10 g/L elemental sulfur on heavy metal-laden electroplating sludge (50 g/L). The sludge-acclimatized, sulfur-grown Acidithiobacillus ferrooxidans isolate was used as sulfur-oxidizing bacteria. For the type of sludge used in this study, high pH reduction, short lag phase, and high heavy metal solubilization efficiencies were obtained in the treatment with 6 g/L sulfur. The kinetic study showed that the rate constant values of heavy metal solubilization were relatively high while using sulfur concentration of 6 g/L. The analysis using shrinking core model of fluid-particle reaction kinetics explicated that chemical reaction step controls the rate of heavy metal biosolubilization. The study provides an optimized strategy to design an efficient biosolubilization system for anticipated energy source.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0