메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재경 (대진대학교 공학교육혁신센터) 김영오 (서울대학교 건설환경공학부)
저널정보
한국방재학회 한국방재학회논문집 한국방재학회논문집 제15권 제5호
발행연도
2015.1
수록면
25 - 35 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
전지구모형(General Circulation Model, GCM)이 모의한 수문기상 변수들은 시공간적 해상도가 매우 크고, GCM과 과거 관측 수문기상 변수들 사이에는 편차가 존재한다. 이를 극복하기 위해 다양한 편차보정기법을 활용하여 GCM 모의결과를 보정한다. 본 연구에서는 GCM 모의강수의 편차보정 개선 정도를 검증하기 위해 기본통계값 뿐만 아니라 entropy를 이용하였다. 우선 본 연구는 이수기와 홍수기에 각각 simple method와 Nested Bias Correction (NBC) method를 기반으로 하는 Composite Bias Correction (CBC) method를 제안하였으며, CBC method가 관측강수 대비 편차, RMSE, 연총강수량에서 각각 0.02 mm/month, 11.10 mm/month, 1325.99 mm/year(관측 연총강수량=1326.28 mm/year)을 나타내 가장 우수함을 나타냈다. 다음으로 entropy를 이용하여 CBC 편차보정방법 적용 전/후의 GCM 모의강수를 검증하였다. 편차보정 전 GCM 모의강수의 확률밀도함수는 발생빈도가 높은 적은 강수에 대해서는 과대모의, 홍수기에는 과소모의하는 것으로 나타났으나 편차보정된 GCM 모의강수의 확률밀도함수는 관측강수와 유사한 형태를 나타내었다. 편차보정된 GCM 모의강수의 entropy(=5.648)는 관측강수(=5.643)와 거의 비슷한 entropy를 나타내어, 관측강수와 통계특성뿐만 아니라 불확실성도 비슷하였다. 따라서 편차보정방법은 GCM 모의변수의 편차를 보정하고 관측변수의 불확실성을 잘 모의하는 것으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0