메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최숙남 (영남대학교 정보통신공학과) 정현열 (영남대학교 정보통신공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제32권 제3호
발행연도
2013.1
수록면
252 - 261 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
일반적인 음성인식 시스템은 조용한 인식 환경에서는 높은 인식성능을 나타내지만 잡음이 존재하는 실제 환경에서는 그 성능이 급격히 저하한다. 본 논문에서는 다양한 잡음환경에서도 강인한 음성인식기를 구현하기 위하여, 주파수의 변이도를 이용하여 음성인식을 위한 환경 정보를 얻고 이를 음성 인식을 위한 모델 개선에 적용하여 성능향상을 도모하는 환경정보 지식에 기반한 주파수 변이 적응 PMC (Parallel Model Combination adaptation using frequency-variant based on environment - awareness : FV-PMC) 방법을 제안한다. 이 방법은 미리 분류된 각 잡음 군간의 평균 주파수 변이도를 미리 계산하여 임계치로 설정하고 미지의 잡음이 포함된 음성이 입력되면 각 잡음 군과의 주파수 변이도를 다시 계산하여 해당 잡음군의 임계치 보다 높을 경우 그 잡음 군의 잡음이 포함된 음성으로 간주하여 이 잡음 군이 포함된 음성을 이용하여 생성된 인식모델을 이용하여 음성인식을 수행한다. 제안한 FV-PMC 방법을 이용하여 잡음을 분류 하였을 경우 평균 분류 정확도는 56%를 보였고 이를 이용해 음성인식 실험을 실시한 결과 Set A의 평균인식률은 79.05%, Set B의 평균인식률은 79.43%, Set C의 평균인식률은 83.37%로 나타났다. 전체 평균인식률 80.62%로 기존의 깨끗한 모델을 이용한 PMC 인식률 74.93% 보다 5.69% 향상된 결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0