메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이상혁 (한국건설기술연구원 인프라안전연구본부) 우용한 (경일대학교 도시인프라공학부)
저널정보
한국도로학회 한국도로학회논문집 한국도로학회논문집 제20권 제6호
발행연도
2018.1
수록면
179 - 189 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PURPOSES : The purpose of this study is to compare applicability, explanation power, and flexibility of traffic accident models between estimating model using the statistical method and the machine learning method. METHODS : In order to compare and analyze traffic accident models between model estimated using the statistical method and machine learning method, data acquisition was conducted, and traffic accident models were estimated using statistical methods such as negative binomial regression model, and machine learning methods such as a generalized regression neural network (GRNN). Then, the fitness of model as $R^2$, root mean square error (RMSE), mean absolute percentage error (MAPE), accuracy, etc., were determined to compare the traffic accident models. RESULTS:The results showed that the annual average daily traffic (AADT), speed limits, number of lanes, land usage, exclusive right turn lanes, and front signals were significant for both traffic accident models. The GRNN model of total traffic accidents had been better statistical significant with $R^2$: 0.829, RMSE: 2.495, MAPE: 32.158, and Accuracy: 66.761 compared with the negative binomial regression model with $R^2$: 0.363, RMSE: 9.033, MAPE: 68.987, and Accuracy: 8.807. The GRNN model of injury traffic accidents also showed similar results of model's statistical significance. CONCLUSIONS :Traffic accident models estimated with GRNN had better statistical significance compared with models estimated with statistical methods such as negative binomial regression model.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0