메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
곽철완 (강남대학교 산업데이터사이언스학부)
저널정보
한국정보관리학회 정보관리학회지 정보관리학회지 제35권 제1호
발행연도
2018.1
수록면
13 - 32 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구의 목적은 빅데이터 연구 논문의 주제 분야 간의 연관관계를 분석하는데 있다. 동시 인용관계를 적용하여 분석 대상의 주제 분야를 추출하였으며, R 프로그램의 Apriori 알고리즘을 이용하여 연관관계의 규칙을 분석하고, arulesViz 패키지를 사용하여 시각화하였다. 연구 결과 22개 주제 분야가 추출되었는데, 이들 주제 분야는 3가지 군집으로 구분되었다. 주제 분야의 연관관계 유형을 분석한 결과, 연관관계의 복잡성에 따라 '전문형', '일반형', '확대형'으로 구분되었다. 전문형에는 문헌정보학, 신문방송학 등이 포함되었고, 일반형에는 정치외교학, 무역학, 관광학 등이 포함되었고, 확대형에는 기타인문학, 사회과학일반, 관광학일반 등이 포함되었다. 이 연관관계는 빅데이터 연구자가 한 주제분야를 인용할 때 관계가 있는 다른 주제 분야를 인용하는 경향을 보여주는 것으로, 도서관에서 학술정보서비스를 위해 연관관계를 활용한 서비스를 고려해야 할 필요가 있다.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0