메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김원욱 (한국해양수산연수원) 김대희 ([주]삼우이머션) 윤대근 (목포해양대학교)
저널정보
해양환경안전학회 해양환경안전학회지 해양환경안전학회지 제24권 제7호
발행연도
2018.1
수록면
870 - 874 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
선박은 해양사고 발생 시 최악의 경우 퇴선을 해야 하나 특성상 협소하고 복잡하며 해상에서 운항하므로 퇴선이 쉽지 않다. 특히, 여객선의 경우 해상에서의 안전훈련을 이수하지 않은 불특정 다수의 승객들로 인해 더욱 퇴선이 어려운 상황이 된다. 이런 경우 승무원들의 피난 유도가 상당히 중요한 역할을 하게 된다. 그리고 구조자가 사고 선박에 진입하여 구조 활동을 하는 경우 어느 구역으로 진입해야 가장 효과적인지에 대한 검토가 필요하다. 일반적으로 승무원 및 구조자는 최단경로를 택하여 이동하는 것이 일반적이나 최단 경로에 사고 상황 등이 발생했을 경우 제2의 최적 경로 선택이 필요하다. 이러한 상황을 해결하기 위해 이 연구에서는 머신러닝(Machine learning)의 기법 중에 하나인 강화학습(Reinforcement Learning)의 Q-Learning 이용하여 퇴선 경로를 산출하고자 한다. 강화학습은 인공지능(Artificial Intelligence)의 가장 핵심적인 기능으로 현재 여러 분야에 사용되고 있다. 현재까지 개발된 대부분의 피난분석 프로그램은 최단 경로를 탐색하는 기법을 사용하고 있다. 이 연구에서는 최단경로가 아닌 최적경로를 분석하기 위해 머신러닝의 강화학습 기법을 이용하였다. 향후 AI기법인 머신러닝은 자율운항선박의 최적항로 선정 및 위험요소 회피 등 다양한 해양관련 산업에 적용 가능할 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0