메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김은석 (Department of Architectural and Environmental Engineering, Graduate School of Hanyang University) 양내원 (Department of Architecture, Hanyang University)
저널정보
한국의료복지시설학회(현 한국의료복지건축학회) 의료·복지 건축(구 한국의료복지시설학회지) 의료·복지건축 : 한국의료복지건축학회 논문집 제22권 제4호
발행연도
2016.1
수록면
47 - 55 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Growth and change are the most important things in planning of hospital architecture. It is especially necessary for countless changes taken place since the hospital opens to be adapted to the planning of hospital architecture phase. The space depth in the hospital serves a very crucial role in accepting these changes. The purpose of this study is to provide basic data necessary to space depth planning to prepare for change through analyzing space depth's change in hospital architecture chronologically. Methods:: The method of this study is analyzing space depth's change in cases of 19 hospitals in total, from the 1980's, which is the quantitative growth period, until recently. Especially this study is analyzing Max & Min space depth focusing change of medical environment. Based on this, this study suggests an form of space depth and optimum range of space depth response to growth and change of hospital architecture. Results: The conclusions of this study are as follows. Considering these conclusion, double linear system is most appropriate for space depth for hospital architecture planning focused on system. Optimal range of space depth is at least 21.6m or more in case of clinic room and from 27 meter to 37meter in case of examination & treatment room. Implications: Space of Depth is a key element determining system for hospital architecture planning focused on system. The results of this paper can be data for planning system of hospital architecture which copes with the change.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0