메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정승규 (서울대학교 농업생명과학연구원) 박종훈 (서울대학교 농업생명과학연구원) 박종화 (서울대학교 환경대학원 환경조경학과) 이동근 (서울대학교 조경지역시스템공학부)
저널정보
한국환경복원기술학회 환경복원녹화 환경복원녹화 제19권 제1호
발행연도
2016.1
수록면
73 - 83 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Forest degradation reduces ecosystem services provided by forest and could lead to change in composition of species. In North Korea, there has been significant forest degradation due to conversion of forest into terrace fields for food production and cut-down of forest for fuel woods. This study analyzed the phenological changes in North Korea, in terms of vegetation and moisture in soil and vegetation, from March to Octorber 2013, using MODIS (MODerate resolution Imaging Spectroradiometer) images and indexes including NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), and NDWI (Normalized Difference Water Index). In addition, marginal farmland was derived using elevation data. Lastly, degraded terrace fields of 16 degree was analyzed using NDVI, NDSI, and NDWI indexes, and marginal farmland characteristics with slope variable. The accuracy value of land cover classification, which shows the difference between the observation and analyzed value, was 84.9% and Kappa value was 0.82. The highest accuracy value was from agricultural (paddy, field) and forest area. Terrace fields were easily identified using slope data form agricultural field. Use of NDVI, NDSI, and NDWI is more effective in distinguishing deforested terrace field from agricultural area. NDVI only shows vegetation difference whereas NDSI classifies soil moisture values and NDWI classifies abandoned agricultural fields based on moisture values. The method used in this study allowed more effective identification of deforested terrace fields, which visually illustrates forest degradation problem in North Korea.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0