메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이동구 (광운대학교 전자융합공학과) 선영규 (광운대학교 전자융합공학과) 김수현 (광운대학교 전자융합공학과) 심이삭 (광운대학교 전자융합공학과) 황유민 (광운대학교 전자융합공학과) 김진영 (광운대학교 전자융합공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제19권 제4호
발행연도
2019.1
수록면
161 - 167 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 안정적인 전력수급과 급증하는 전력수요를 예측하는 수요예측 기술에 대한 관심과 실시간 전력측정을 가능하게 하는 스마트 미터기의 보급의 증대로 인해 수요예측 기법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 측정된 가정의 전력 사용량 데이터를 학습하여 예측결과를 출력하는 딥 러닝 예측모델 실험을 진행한다. 그리고 본 연구에서는 데이터 전처리 기법으로써 이동평균법을 도입하였다. 실제로 측정된 데이터를 학습한 모델의 예측량과 실제 전력 측정량을 비교한다. 이 예측량을 통해서 전력공급 예비율을 낮춰 사용되지 않고 낭비되는 예비전력을 줄일 수 있는 가능성을 제시한다. 또한 본 논문에서는 같은 데이터, 같은 실험 파라미터를 토대로 세 종류의 기법: 다층퍼셉트론(Multi Layer Perceptron, MLP), 순환신경망(Recurrent Neural Network, RNN), Long Short Term Memory(LSTM)에 대해 실험을 진행하여 성능을 평가한다. 성능평가는 MSE(Mean Squared Error), MAE(Mean Absolute Error)의 기준으로 성능평가를 진행했다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0