메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Soon-Young (Integrated Research Center for Genome Polymorphism, The Catholic University of Korea School of Medicine) Kim, Ji-Hong (Integrated Research Center for Genome Polymorphism, The Catholic University of Korea School of Medicine) Chung, Yeun-Jun (Integrated Research Center for Genome Polymorphism, The Catholic University of Korea School of Medicine)
저널정보
한국유전체학회 Genomics & informatics Genomics & informatics 제10권 제3호
발행연도
2012.1
수록면
194 - 199 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In addition to single-nucleotide polymorphisms (SNP), copy number variation (CNV) is a major component of human genetic diversity. Among many whole-genome analysis platforms, SNP arrays have been commonly used for genomewide CNV discovery. Recently, a number of CNV defining algorithms from SNP genotyping data have been developed; however, due to the fundamental limitation of SNP genotyping data for the measurement of signal intensity, there are still concerns regarding the possibility of false discovery or low sensitivity for detecting CNVs. In this study, we aimed to verify the effect of combining multiple CNV calling algorithms and set up the most reliable pipeline for CNV calling with Affymetrix Genomewide SNP 5.0 data. For this purpose, we selected the 3 most commonly used algorithms for CNV segmentation from SNP genotyping data, PennCNV, QuantiSNP; and BirdSuite. After defining the CNV loci using the 3 different algorithms, we assessed how many of them overlapped with each other, and we also validated the CNVs by genomic quantitative PCR. Through this analysis, we proposed that for reliable CNV-based genomewide association study using SNP array data, CNV calls must be performed with at least 3 different algorithms and that the CNVs consistently called from more than 2 algorithms must be used for association analysis, because they are more reliable than the CNVs called from a single algorithm. Our result will be helpful to set up the CNV analysis protocols for Affymetrix Genomewide SNP 5.0 genotyping data.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0