메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yang, Yun Hui (Division of Applied Life Science [BK21Plus] and Research Institute of Life Sciences, Gyeongsang National University) Kang, Hyeon-Woo (Division of Applied Life Science [BK21Plus] and Research Institute of Life Sciences, Gyeongsang National University) Ro, Hyeon-Su (Division of Applied Life Science [BK21Plus] and Research Institute of Life Sciences, Gyeongsang National University)
저널정보
한국균학회 Mycobiology Mycobiology 제42권 제2호
발행연도
2014.1
수록면
167 - 173 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A ${\beta}$-glucan synthase gene was isolated from the genomic DNA of polypore mushroom Sparassis crispa, which reportedly produces unusually high amount of soluble ${\beta}$-1,3-glucan (${\beta}$-glucan). Sequencing and subsequent open reading frame analysis of the isolated gene revealed that the gene (5,502 bp) consisted of 10 exons separated by nine introns. The predicted mRNA encoded a ${\beta}$-glucan synthase protein, consisting of 1,576 amino acid residues. Comparison of the predicted protein sequence with multiple fungal ${\beta}$-glucan synthases estimated that the isolated gene contained a complete N-terminus but was lacking approximately 70 amino acid residues in the C-terminus. Fungal ${\beta}$-glucan synthases are integral membrane proteins, containing the two catalytic and two transmembrane domains. The lacking C-terminal part of S. crispa ${\beta}$-glucan synthase was estimated to include catalytically insignificant transmembrane ${\alpha}$-helices and loops. Sequence analysis of 101 fungal ${\beta}$-glucan synthases, obtained from public databases, revealed that the ${\beta}$-glucan synthases with various fungal origins were categorized into corresponding fungal groups in the classification system. Interestingly, mushrooms belonging to the class Agaricomycetes were found to contain two distinct types (Type I and II) of ${\beta}$-glucan synthases with the type-specific sequence signatures in the loop regions. S. crispa ${\beta}$-glucan synthase in this study belonged to Type II family, meaning Type I ${\beta}$-glucan synthase is expected to be discovered in S. crispa. The high productivity of soluble ${\beta}$-glucan was not explained but detailed biochemical studies on the catalytic loop domain in the S. crispa ${\beta}$-glucan synthase will provide better explanations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0