메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Peng, Jing Lun (Department of Feed Science and Technology, College of Animal Life Sciences, Kangwon National University) Kim, Moon Ju (Department of Feed Science and Technology, College of Animal Life Sciences, Kangwon National University) Kim, Byong Wan (Department of Feed Science and Technology, College of Animal Life Sciences, Kangwon National University) Sung, Kyung Il (Department of Feed Science and Technology, College of Animal Life Sciences, Kangwon National University)
저널정보
한국초지조사료학회 한국초지조사료학회지 한국초지조사료학회지 제36권 제3호
발행연도
2016.1
수록면
223 - 236 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study was to construct Italian ryegrass (IRG) dry matter yield (DMY) estimation models in South Korea based on climatic data by locations. Obviously, the climatic environment of Jeju Island has great differences with Korean Peninsula. Meanwhile, many data points were from Jeju Island in the prepared data set. Statistically significant differences in both DMY values and climatic variables were observed between south areas of Korean Peninsula and Jeju Island. Therefore, the estimation models were constructed separately for south areas of Korean Peninsula and Jeju Island separately. For south areas of Korean Peninsula, a data set with a sample size of 933 during 26 years was used. Four optimal climatic variables were selected through a stepwise approach of multiple regression analysis with DMY as the response variable. Subsequently, via general linear model, the final model including the selected four climatic variables and cultivated locations as dummy variables was constructed. The model could explain 37.7% of the variations in DMY of IRG in south areas of Korean Peninsula. For Jeju Island, a data set containing 130 data points during 17 years were used in the modeling construction via the stepwise approach of multiple regression analysis. The model constructed in this research could explain 51.0% of the variations in DMY of IRG. For the two models, homoscedasticity and the assumption that the mean of the residuals were equal to zero were satisfied. Meanwhile, the fitness of both models was good based on most scatters of predicted DMY values fell within the 95% confidence interval.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0