메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lou, Yun-Feng (State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University) Luo, Chuan (State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University) Jin, Xian-Long (State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제53권 제3호
발행연도
2015.1
수록면
393 - 410 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Two dimensional numerical models and physical models have been developed to study the highly nonlinear interactions between waves and breakwaters, but several of these models consider the effects of the structural dynamic responses and the shape of the breakwater axis on the wave pressures. In this study, a multi-material Arbitrary Lagrangian Eulerian (ALE) method is developed to simulate the nonlinear interactions between nonlinear waves and elastic seawalls on a coastal rubble mound breakwater, and is validated experimentally. In the experiment, a solitary wave is generated and used with a physical breakwater model. The wave impact is validated computationally using a breakwater - flume coupling model that replicates the physical model. The computational results, including those for the wave pressure and the water-on-deck, are in good agreement with the experimental results. A local breakwater model is used to discuss the effects of the structural dynamic response and different design parameters of the breakwater on wave loads, together with pressure distribution up the seawall. A large-scale breakwater model is used to numerically study the large-scale wave impact problem and the horizontal distribution of the wave pressures on the seawalls.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0