메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Thandayutham, Karthikeyan (Wave Energy and Fluids Engineering Laboratory [WEFEL], Department of Ocean Engineering, Indian Institute of Technology Madras) Avital, E.J. (School of Engineering and Material Science, Queen Mary University of London) Venkatesan, Nithya (School of Electrical Engineering, VIT University) Samad, Abdus (Wave Energy and Fluids Engineering Laboratory [WEFEL], Department of Ocean Engineering, Indian Institute of Technology Madras)
저널정보
테크노프레스 Ocean systems engineering Ocean systems engineering 제9권 제2호
발행연도
2019.1
수록면
111 - 133 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Flow through a scaled horizontal axis marine current turbine was numerically simulated after validation and the turbine design was optimized. The computational fluid dynamics (CFD) code Ansys-CFX 16.1 for numerical modeling, an in-house blade element momentum (BEM) code for analytical modeling and an in-house surrogate-based optimization (SBO) code were used to find an optimal turbine design. The blade-pitch angle (${\theta}$) and the number of rotor blades (NR) were taken as design variables. A single objective optimization approach was utilized in the present work. The defined objective function was the turbine's power coefficient ($C_P$). A $3{\times}3$ full-factorial sampling technique was used to define the sample space. This sampling technique gave different turbine designs, which were further evaluated for the objective function by solving the Reynolds-Averaged Navier-Stokes equations (RANS). Finally, the SBO technique with search algorithm produced an optimal design. It is found that the optimal design has improved the objective function by 26.5%. This article presents the solution approach, analysis of the turbine flow field and the predictability of various surrogate based techniques.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0