메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Maedeh, Pouyan Abbasi (University of Natural Resources and Life Sciences, Institue of Geotechnical Engineering) Wu, Wei (University of Natural Resources and Life Sciences, Institue of Geotechnical Engineering) da Fonseca, Antonio Viana (University of Porto, Faculty of civil engineering) Irdmoosa, Kourosh Ghaffari (Kharazmi University, Faculty of engineering) Acharya, Madhu Sudan (University of Natural Resources and Life Sciences, Institue of Geotechnical Engineering) Bodaghi, Ehsan (Islamic Azad University)
저널정보
테크노프레스 Advances in computational design Advances in computational design 제3권 제3호
발행연도
2018.1
수록면
269 - 288 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
180 different 2D numerical analyses have been carried out to estimate the factor of safety (FOS) for rooted slopes. Four different types of vegetated coverage and a variety of slope geometry considering three types of soil have been evaluated in this study. The highly influenced parameters on the slope's FOS are determined. They have been chosen as the input parameters for developing a new practical relationship to estimate the FOS with an emphasis on the roots effects. The dependency of sliding mode and shape considering the soil and roots-type has been evaluated by using the numerical finite element model. It is observed that the inclination and height of the slope and the coverage type are the most important effective factors in FOS. While the soil strength parameters and its physical properties would be considered as the second major group that affects the FOS. Achieved results from the developed relationship have shown the acceptable estimation for the roots slope. The extracted R square from the proposed relationship considering nonlinear estimation has been achieved up to 0.85. As a further cross check, the achieved R square from a multi-layer neural network has also been observed to be around 0.92. The numerical verification considering different scenarios has been done in the current evaluation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0