메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nishitani, Akira (Faculty of Science and Engineering, Waseda Univ.) Matsui, Chisa (Tokyo Metropolitan Government) Hara, Yushiro (Faculty of Science and Engineering, Waseda Univ.) Xiang, Ping (Faculty of Science and Engineering, Waseda Univ.) Nitta, Yoshihiro (Department of Architecture, Ashikaga Institute of Technology) Hatada, Tomohiko (Kajima Technical Research Institute) Katamura, Ryota (Kajima Technical Research Institute) Matsuya, Iwao (Department of Mechanical Engineering, Nagaoka Univ. of Technology) Tanii, Takashi (Faculty of Science and Engineering, Waseda Univ.)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제15권 제3호
발행연도
2015.1
수록면
881 - 896 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The authors' research group has developed a noncontact type of sensors which directly measure the inter-story drift displacements of a building during a seismic event. Soon after that event, such seismically-induced drift displacement data would provide structural engineers with useful information to judge how the stories have been damaged. This paper presents a scheme of estimating the story cumulative plastic deformation ratios based on such measured drift displacement information toward the building safety monitoring. The presented scheme requires the data of story drift displacements and the ground motion acceleration. The involved calculations are rather simple without any detailed information on structural elements required: the story hysteresis loops are first estimated and then the cumulative plastic deformation ratio of each story is evaluated from the estimated hysteresis. The effectiveness of the scheme is demonstrated by utilizing the data of full-scale building model experiment performed at E-defense and conducting numerical simulations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0