본문 바로가기
[학술저널]

  • 학술저널

Kim, Cheong Ghil(Department Of Computer Science, Namseoul University)

발행기관의 요청으로 개인이 구매하실 수 없습니다.

표지

북마크 0

리뷰 0

이용수 0

피인용수 0

초록

Currently drone industry has become one of the fast growing markets and the technology for unmanned aerial vehicles are expected to continue to develop at a rapid rate. Especially small unmanned aerial vehicle systems have been designed and utilized for the various field with their own specific purposes. In these fields the path planning problem to find the shortest path between two oriented points is important. In this paper we introduce a path planning strategy for an autonomous flight of unmanned aerial vehicles through reinforcement learning with self-positioning technique. We perform Q-learning algorithm, a kind of reinforcement learning algorithm. At the same time, multi sensors of acceleraion sensor, gyro sensor, and magnetic are used to estimate the position. For the functional evaluation, the proposed method was simulated with virtual UAV environment and visualized the results. The flight history was based on a PX4 based drones system equipped with a smartphone.

목차

등록된 정보가 없습니다.

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here